

Enseignant ·e·s: Dovi, Huruguen, Khukhro

Algèbre Linéaire - CMS

7 novembre 2023 Durée : 105 minutes

Contrôle 1 (Enoncé)

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé rectoverso, il contient 11 questions et 12 pages, les dernières pouvant être vides. Il y a 27 points au total. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table et vérifiez votre nom et votre numéro SCIPER sur la première page.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - les points indiqués si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - 0 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien									
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren							
ce qu'il ne t	aut ${f PAS}$ faire $ $ what should ${f NOT}$ be done $ $ was man ${f NOT}$	ICHT tun sollte							

Première partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 (1 point)

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application donnée par $f(x) = x^2 + x + 4$. Que veut dire l'énoncé :

$$\exists y \in \mathbb{R}, \, \forall x \in \mathbb{R}, \, x^2 + x + 4 \neq y ?$$

	f	ogt	anri	ioeti	770
	l T	est	sur	ecti	₽V€

	Pour tout	nombre	réel	r il	existe	un	nombre	réel	u tel	ane	f(x) =	≠ 1
	1 041 6046	пошис	1001	11	CALOUC	uii	1101111111111111111111111111111111111	1001	u $v \in I$	uuc	1 (.1.)	⊢ (

$$f$$
 n'est pas surjective

Question 2 (1 point)

Soit $f: E \to F$ une application. Lequel des énoncés suivants est équivalent à l'énoncé "f est injective"?

$$\forall x, x' \in E, f(x) \neq f(x') \Longrightarrow x \neq x'$$

$$\forall x, x' \in E, x \neq x' \text{ et } f(x) = f(x')$$

$$\exists x \in E, f^{-1}(\{f(x)\}) = \{x\}$$

Question 3 (1 point)

Laquelle des applications suivantes est injective?

$$g: \mathbb{R} \to \mathbb{R}^2, g(x) = (0, x^2 + 2x + 1)$$

$$g: \mathbb{R} \to \mathbb{R}^2, g(x) = (2x+1, 2x+1)$$

$$g: \mathbb{R} \to \mathbb{R}^2, \ g(x) = (x^2, 2x^2 + 1)$$

$$g: \mathbb{R} \to \mathbb{R}^2, \ g(x) = (x^2, x^2)$$

$$a: \mathbb{R} \to \mathbb{R}^2 \quad a(x) = (x^2 \ x^2)$$

Pour les Questions 4, 5 et 6 ci-dessous on considère les propriétés P, Q et R suivantes portant sur $x \in \mathbb{N}$:

P: x est multiple de 2,Q: x est multiple de 3, R : x est multiple de 6.

Question 4 (2 points)

Laquelle des affirmations ci-dessous est vraie?

ļ	$\exists x$	\in	$\mathbb{N},$	R	et	nonQ

$\exists x$	$\subset 1$, n	e_{t}	nonQ
١./	- E			_

$\forall x$	\in	$\mathbb{N},$	(P	ou	$R) \Longrightarrow$	Q
$\forall x$	\in	$\mathbb{N},$	(P	et	$Q) \Longrightarrow A$	R

Question 5 (1 point)

Le sous-ensemble de $\mathbb N$ défini par la propriété caractéristique R est donné par :

\prod {	$x \in$	\mathbb{N}	$\exists k$	\in	\mathbb{R} ,	x	=	6k

Question 6 (1 point)

Laquelle des affirmations suivantes est la réciproque de l'affirmation $\forall x \in \mathbb{N}$, non $P \Longrightarrow R$?

	$\forall x$	_	\mathbb{N} .	R	\rightarrow	non P
ı	V.U	\leftarrow	14.	n	\rightarrow	110H <i>E</i>

$$\exists x \in \mathbb{N}, \text{ non} P \text{ et non} R$$

Pour les Questions 7, 8 et 9 ci-dessous on donne un ensemble fini E et un sous-ensemble $A \subset E$ vérifiant :

$$Card(E) = 14$$
 et $Card(A) = 3$.

On donne aussi les coefficients suivants, figurant dans le triangle de Pascal :

$$\binom{11}{0}=1 \qquad \binom{11}{1}=11 \qquad \binom{11}{2}=55 \qquad \binom{11}{3}=165 \qquad \binom{11}{4}=330 \qquad \binom{11}{5}=462.$$

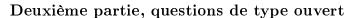
Question 7 (2 points)

Combien existe-t-il de sous-ensembles B de E vérifiant :

$$Card(B) = 8 \text{ et } A \cap B = \emptyset$$
?

 □ 55
 □ 462
 □ 165
 □ 330

Question 8 (2 points)

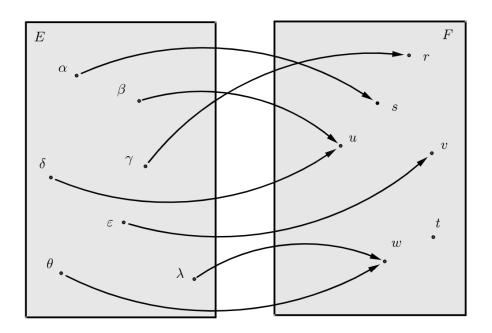

Combien existe-t-il de sous-ensembles C de E vérifiant :

$$Card(C) = 6$$
 et $Card(A \cap C) = 2$?

990 495 165 330

Question 9 (2 points)

Quelle est la valeur exacte de $\binom{12}{5} - \binom{12}{4}$?



Répondre dans l'espace dédié. Sauf indication contraire, votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 10: Cette question est notée sur 7 points.

Soient les ensembles finis E et F et l'application $f: E \to F$ décrits par le dessin ci-dessous.

(a) En détaillant votre démarche, déterminer le sous-ensemble $\mathcal{C}_F f(A)$ de F où :

$$A = \{\alpha, \beta, \gamma, \delta\}.$$

(b) Pour le sous-ensemble A de E donné au (a), est-il vrai ou faux de dire que :

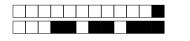
$$\forall x \in E, \quad f(x) \in f(A) \Rightarrow x \in A$$
?

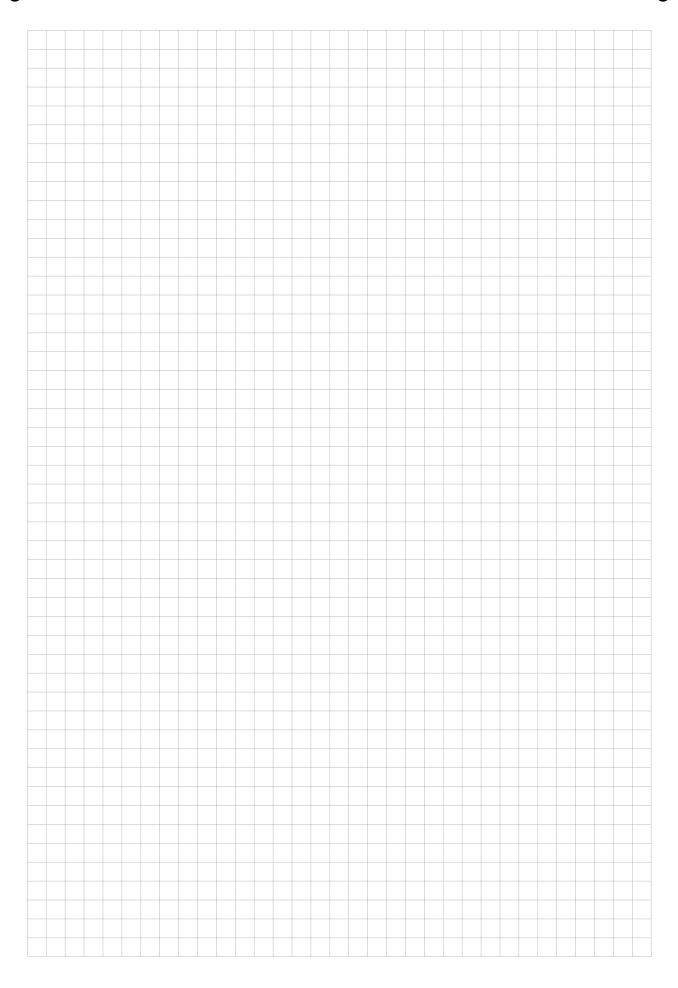
Justifier votre réponse.

- (c) Donner la définition de $f^{-1}(B)$ où B est un sous-ensemble de F.
- (d) En détaillant votre démarche, déterminer $f^{-1}(B)$ pour le sous-ensemble :

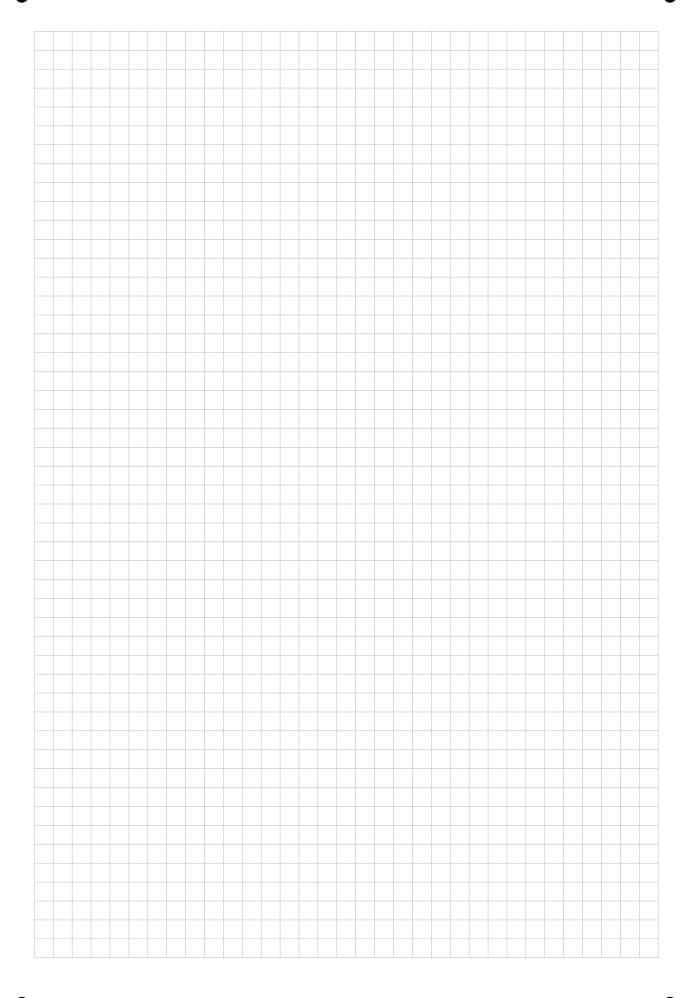
$$B = \{s, t, u, v, w\}.$$

(e) Sans aucune justification, déterminer un sous-ensemble C de E possédant le moins possible d'éléments et tel que :

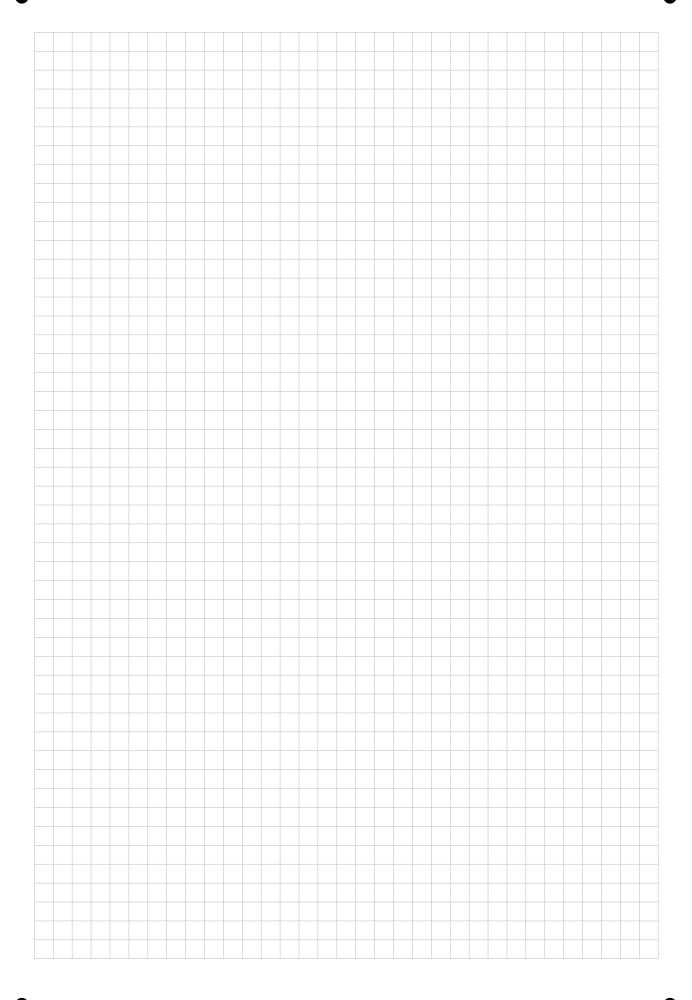

$$f(C) = f(f^{-1}(B)),$$


où B est le sous-ensemble de F défini au (d).

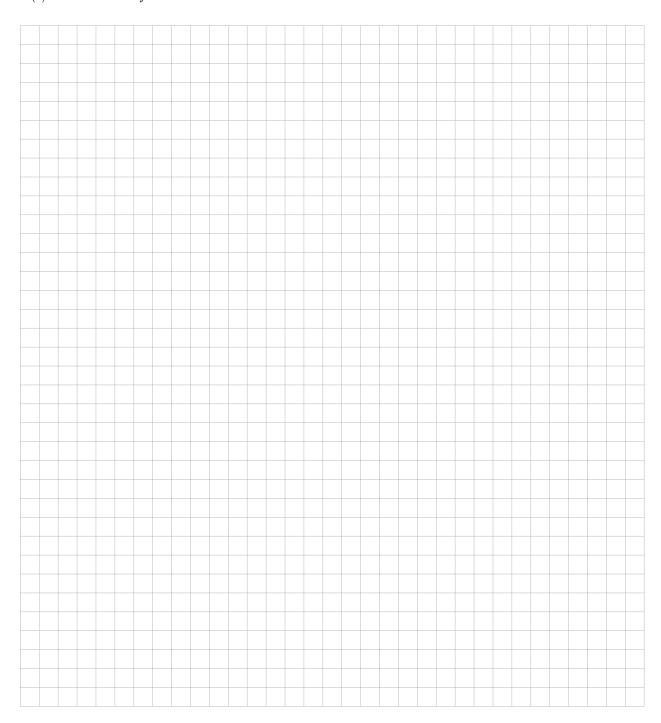
(f) Sans aucune justification, définir une application :


$$g: F \to E$$

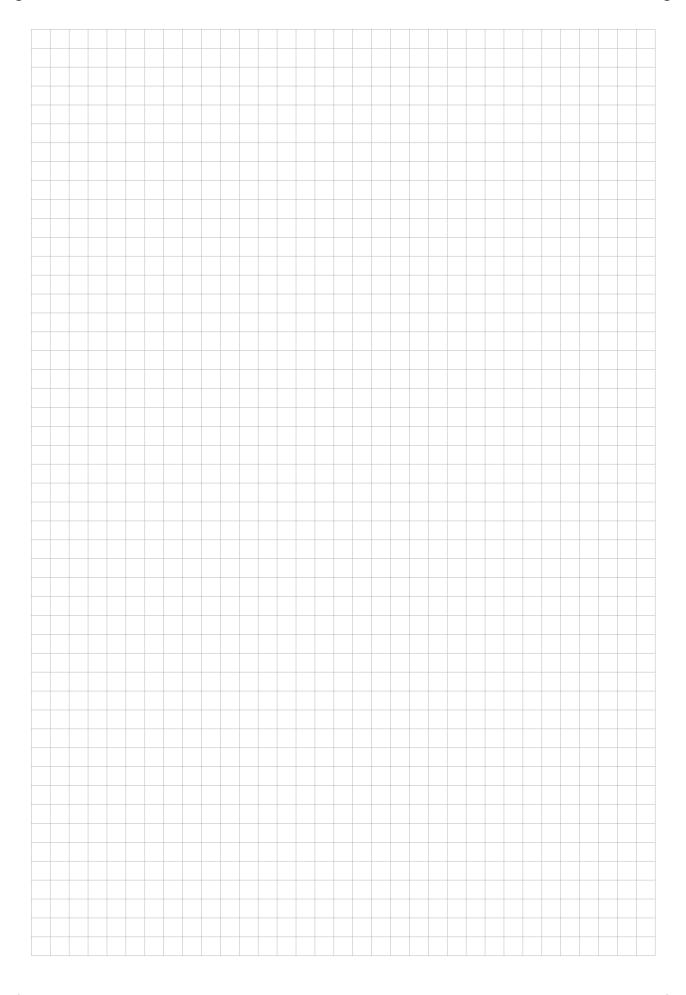
telle que $\operatorname{Im}(f \circ g)$ possède exactement deux éléments.



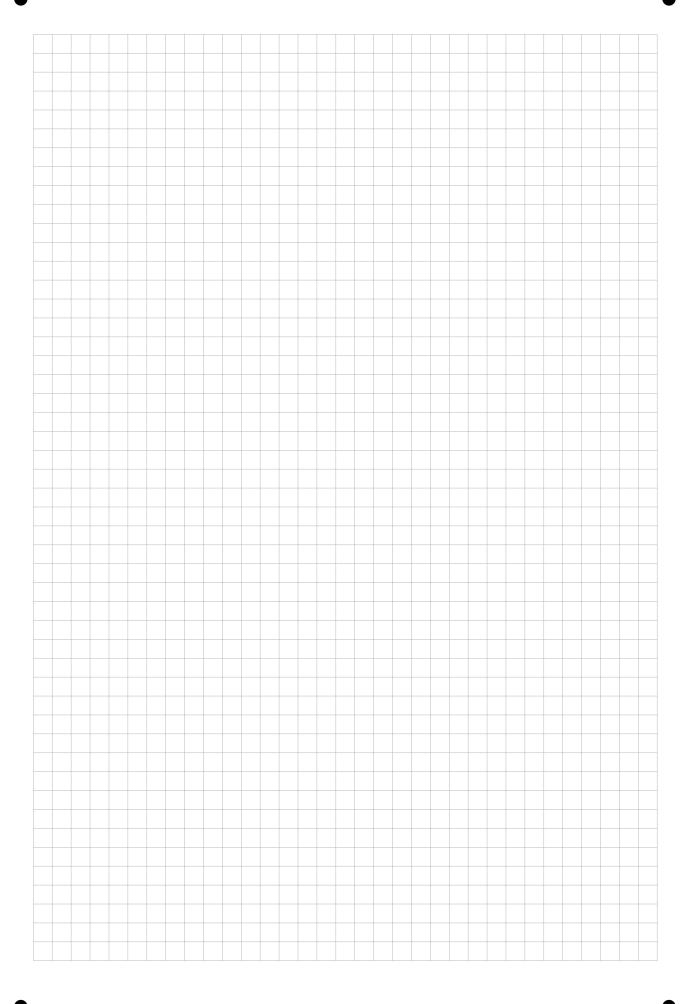




Question 11: Cette question est notée sur 7 points.


On considère l'application suivante :

$$f:]-\infty, 2[\cup]2, +\infty[\longrightarrow \mathbb{R}, \quad x \longrightarrow \frac{x^2-1}{x-2}.$$


- (a) Pour tout $x \in]-\infty, 2[\,\cup\,]2, +\infty[\,,$ déterminer l'ensemble $f^{-1}(\{f(x)\})\,.$ Combien a-t-il d'éléments ?
- (b) L'application f est-elle injective ? Justifier rigoureusement votre réponse.
- (c) Déterminer Im f.

